首页>国企·民企>深·观察深·观察
直面隐忧 中国人工智能企业机会何在
今年人工智能领域的发展迎来新一波高潮,犹如枝繁叶茂的大树渗透到各行业的蓝天之中,跃跃欲试服务于众多领域。有人欢呼,人工智能商业应用元年已经到来。
2018年,人工智能领域的另一趋势是大额融资频发。
清华大学近日发布的《中国AI发展报告2018》显示,自2013年以来,全球和中国人工智能行业投融资规模都呈上涨趋势。2017年全球人工智能投融资总规模达395亿美元,融资事件1208笔,其中中国的投融资总额达到277.1亿美元,融资事件369笔。中国AI企业融资总额占全球融资总额的70%,融资笔数达31%。
在业界看来,投融资的热情不减,主要是看中人工智能与各行业结合的广阔前景。
然而,有业内人士近日指出,目前国内跟人工智能有关的公司大概有四千多家,但是能够得到投资人青睐或关注,并且愿意投资的,大概不到三分之一。如果没有后续资金投入,很多初创企业有可能难以生存下去。由于人工智能产生收益的时间存在不确定性,巨大繁荣的背后存在隐忧。
那么,什么才是人工智能企业的核心竞争力?对于初创企业来说,如何才能站稳脚跟而不被市场淘汰?直面隐忧,中国人工智能企业的机会何在?
隐忧一:发展结构“头重脚轻”
重点突破基础领域,建立自己的生态体系
早在2015年,谷歌开放其内部使用的机器学习软件TensorFlow源代码,脸书、亚马逊和微软也纷纷发布其工程师用于机器学习的开源软件。似乎AI进入了“免费原材料”时代,人人都可以顺手取材。但是,“国外的开源布局对于我国AI行业发展而言,埋藏着巨大隐患。”远望智库人工智能事业部部长、图灵机器人首席战略官谭茗洲指出。
谭茗洲告诉记者:“开源模式会引导技术方向、路线图,形成开源生态,创造商业模式,这些由发起开源项目的核心利益者掌控,不仅控制行业上层的应用,还控制底层的生态,构建了整个帝国,掌控极大的权利。因此,开源虽是开放的资源,但现在免费并不代表未来不会收费和控制。如安卓系统是一种开源手机操作系统及应用开发平台,而谷歌实际上主导着整个生态的发展。”
谭茗洲认为,若我国企业今后过度依赖目前的AI开源平台,采用大量现成的源代码,仿佛在起跑线上丧失优势,创新及工艺再精深,也是在人家的体系中做零部件的更新改造。“如同温水煮青蛙,今后可能会给行业带来很大影响。这将是最大的隐忧。”他说。
赛迪研究院公布的《2018中国人工智能产业展望》提出,由于我国人工智能产业重应用技术、轻基础理论,底层技术积累薄弱,存在“头重脚轻”的结构不均衡问题,使我国人工智能产业犹如建立在沙滩上的城堡,根基不稳。基层技术积累薄弱使人工智能核心环节受制于人,阻碍重大科技创新,不利于国内企业参与国际竞争。
那么,建立我国自己的AI生态体系,还有机会吗?“当然,”谭茗洲斩钉截铁地答道,“在时间上还来得及,因为国外也才刚刚发展。从国家层面洞悉AI发展态势,重点突破基础领域,针对人工智能底层技术,加强对以深度学习为代表的底层算法模型的深入研究,并积极布局影响人工智能未来发展的前沿基础理论研究。现在国内也有一些小团队在做相关开发项目,有一定潜质,而且我们拥有全世界最多的应用开发者、非常多的应用场景、大体量的市场、蓬勃的创新创业环境等,这些都是国外比不了的。”
据了解,科技部指导下的新一代人工智能产业技术创新战略联盟,已联合深圳鹏城实验室于7月在深圳启动了中国自己的“启智开源开放平台(OpenI)”的建设。
隐忧二:商业应用路径不明确
瞄准市场需求,实现落地是关键
据亿欧智库《2018中国智能商业落地研究报告》统计,2017年中国人工智能创业公司获得累计融资超过500亿元,但商业落地百强创业公司累计收入不足100亿元,90%以上人工智能企业亏损。不少业内人士担心,国内人工智能领域存在巨大泡沫,或将迎来一波倒闭潮。
《2018中国人工智能产业展望》提出,我国人工智能产业处于早期发展阶段,商业化应用路径尚不明确,商业落地痛点突出,致使近期实际商业价值变现难度较大。
谭茗洲指出,“对初创企业而言,人工智能有门槛,创业成本较高。因此,建议企业不要太盲目,要尽快找准发力方向,而AI项目商业应用场景的落地是其成败与否的关键,快速积累核心技术优势,打造商业模式,才能做出真正有市场需求的产品,产生现金流。这也有助于人工智能行业回归理性”。
“未来产品形态应能把智能交互和后面的服务及产品联系在一起。”新一代人工智能产业技术创新战略联盟联合秘书长、科大讯飞副总裁兼AI研究院联席院长李世鹏分析,亚马逊成功通过智能音箱将人工智能引入美国家庭的方式值得借鉴,我们需要有亚马逊这样既卖服务又卖产品和内容的企业。
据《2017年中美人工智能创投现状与趋势研究报告》显示,中国智能机器人与无人机相关技术创业最为火爆;其次为语义分析、语音识别、聊天机器人等自然语言系列技术;然后是人脸识别、视频/监控、自动驾驶、图像识别等计算机视觉系列技术;另外,情感计算包含心理学、语义、视觉、环境感知等多种复杂应用的技术也在慢慢成长。
李世鹏表示,人工智能包括算法、数据和处理能力。从投资角度首要看数据,BAT、微软、苹果、脸书在很多领域已占先机,想去撼动它们经过十几年积累的数据并不容易。所以,对于初创公司,没有多少资源去做范围太广、体量太大的事情,其成败的关键在于能否有渠道获得海量独特的数据,并通过这些数据为用户提供新的价值,比如大幅提高传统行业的生产力。
隐忧三:专业人才成稀缺资源
加快AI及相关学科布局,培养跨学科人才
“目前,人工智能最大痛点之一是人才难得,AI被炒得很热,稍微懂点算法的人一出来就能收到很多Offer,身价水涨船高。”李世鹏表示。
《2017年中美人工智能创投现状与趋势研究报告》指出,目前中国人工智能的人才培养已成为一个关键问题,人才缺失可能会对未来AI产业发展产生牵制作用。美国国家科技委员会发布的2017年人工智能全球大学排名中,前50名均位于欧美地区,我国大学无一上榜。此外,国内缺乏人工智能与传统行业的跨界人才,不利于AI在各垂直行业应用推广。
据业内对中美AI人才分析显示,截至2017年6月,中国共有592家人工智能公司,拥有员工约39200名。相比之下,美国人才数量是我国两倍。据领英数据显示,我国从业经验10年以上的AI人才比例不足40%,而美国这一比例超过70%;美国人工智能基础层、技术层和应用层的人才数量占比分别为22.7%、37.4%和39.9%,而中国为3.3%、34.9%和61.8%。
李世鹏建议,我国需加快人工智能及相关学科布局,高校加强学科建设,依托现有人工智能相关学科,培养跨学科人才,并鼓励高校、科研院所加大与人工智能企业、国外高校及相关机构的合作力度,打造多种形式人才培养平台;针对人工智能芯片、基础算法模型等重点领域,充分利用现有各类人才计划,并设立专门通道和定向优惠政策,加大对国际顶级科学家和高层次人才的吸引力,加快人才引进效率,扩大人才引进规模;重视培养贯通人工智能基础理论、软硬件技术、市场产品及垂直领域应用的纵向跨界人才,以及兼顾人工智能与经济、社会和法律等横向跨界人才,以及兼顾人工智能与经济、社会和法律等横向跨界人才。
编辑:刘小源
关键词:企业 ai 应用 隐忧 融资


中国制造助力孟加拉国首条河底隧道项目
澳大利亚猪肉产业协会官员看好进博会机遇
联合国官员说叙利亚约1170万人需要人道主义援助
伊朗外长扎里夫宣布辞职
中国南极中山站迎来建站30周年
联合国特使赴也门斡旋荷台达撤军事宜
以色列前能源部长因从事间谍活动被判11年监禁
故宫博物院建院94年来首开夜场举办“灯会”
法蒂玛·马合木提
王召明
王霞
辜胜阻
聂震宁
钱学明
孟青录
郭晋云
许进
李健
覺醒法師
吕凤鼎
贺铿
金曼
黄维义
关牧村
陈华
陈景秋
秦百兰
张自立
郭松海
李兰
房兴耀
池慧
柳斌杰
曹义孙
毛新宇
詹国枢
朱永新
张晓梅
焦加良
张连起
龙墨
王名
何水法
李延生
巩汉林
李胜素
施杰
王亚非
艾克拜尔·米吉提
姚爱兴
贾宝兰
谢卫
汤素兰
黄信阳
张其成
潘鲁生
冯丹藜
艾克拜尔·米吉提
袁熙坤
毛新宇
学诚法师
宗立成
梁凤仪
施 杰
张晓梅


